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Outline

• Marine Ice Sheet and Grounding Line Dynamics

• My Solution
• Numerics (Adaptive finite elements)
• Validation in 1D and 2D
• Effect of buttressing and ice rises on Marine Ice Sheet

Instability (and movies, if time permits)
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We are interested in modeling marine ice sheets..

Figure: Schoof, 2006
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Hierarchy (or “Zoology”) of ice models

Several models approximate Stokes flow with increasing
complexity; In this study we use a 2D model

Type Flow Along-flow Transverse Vertical Example
regime direction direction

1D plug or shear resolved ignored parameterized Vieli and Payne 2005

quasi-2D plug resolved parameterized parameterized Dupont 2004
2D-planar N/A resolved ignored resolved Pattyn et al 2006
quasi-3D N/A resolved parameterized resolved Pattyn 2002

2D plug resolved resolved parameterized MacAyeal 1989

3D N/A resolved resolved resolved Blatter 1995
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Shelfy-Stream Equations

• Momentum Balance (diagnostic):

∇ · (hν~D) + ~τb = ρgh∇(b + h),

Dij = 2ε̇ij + 2(ε̇xx + ε̇yy )δij ,
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• Mass Balance (prognostic):

ht +∇ · (~uh) = a

• Basal stress closure:
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Boundary Condition

At the ice shelf front, the b.c. arises from a pressure imbalance;
effectively, the shelf is being “pulled” seaward:

Figure: MacAyeal,“Lessons in
Ice-Sheet Modeling“
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Buttressing

• How this ”pulling“ stress is is transmitted through the shelf, and
how much is taken up by the margins (and possible ice
rises/rumples), determine stress conditions along the grounding line.
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Grounding zone

• The stress not taken up by margins and rises must be balanced by
the ”extra“ basal stress in the grounded portion (above that
required to balance gravity locally - loosely, ~τb > ρgh∇s)

• The area where this is the case may not extend far from the G.L. in
which case high sliding velocities are required in this zone



Outline Model Numerics 1D Results 2D Simulations Conclusions

Numerical model

The Shelfy Stream equations are solved using finite elements:

• The momentum balance is solved for u, v using bilinear basis
functions on rectangular cells. The nonlinear nature means
the solution must be iterative (h is held constant during the
iterations).

• h is defined as piecewise constant and the evolution of h is
solved by finite volume (technically a zero-order discontinuous
Galerkin scheme).

The above two steps constitute 2 parts of a single timestep. The
third is mesh adaption.
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Mesh Adaption

In order to provide the high resolution required when the
Grounding zone is small compared to the domain but avoid
crippling computational expense, 2 different modes of mesh
adaption were implemented (and evaluated):

• Moving Mesh (also known as
r -refinement) - gridpoints
moved, connectivity and # of
cells remain constant

• Adaptive Refinement
(h-refinement) - dividing and
merging of cells - “hanging
node” issues
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Representing grounding line change

And how do I actually move the grounding line?

• Movement of grounding line is
completely diagnostic

• After each timestep (i.e. after h is
evolved and the mesh is adapted),
the floatation condition
(h > −ρw

ρ zbed) is evaluated at each
cell
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Technology: deal.II library

D ifferential Equations Analysis Library; http://dealii.org

• Finite element software package; just a little higher-level than
Libmesh

• Optional to replace lin alg objects by PETSc wrappers - easy
to parallelize

• Lin. systems solved by conj. grad. with jacobi or block-jacobi
precond.

• clever way of dealing with “hanging
nodes” by linear constraints: values
are slaved to neighboring nodes
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1D Validation

• Despite recent theoretical advances (Schoof, 2006) there are
still some loose ends, as pointed out by Vieli and Payne
(2005), such as resolution dependence and inability to find
steady states

• There is (or will be) a standard intercomparison for 1D models
(MISMIP), which includes comparison with analytic results

• I will demonstrate the ability of my Moving Mesh model to
reproduce such results, as well as its effectiveness with very
few gridpoints while a uniform mesh fails with many gridpoints
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MISMIP (experiment 3)

Figure: xg versus t Figure: h at divide versus t

• Experiment details: ice sheet grown from scratch on bedrock with
sill, Glen’s Law constant (blue bars) changed every 15-30kA

• Steady grounding line and divide thickness predicted by the
quasi-analytic solution of Schoof (2006) shown (squares)
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MISMIP (experiment 3)

Figure: xg versus t Figure: h at divide versus t

• deal.ii model (moving mesh, 400 gridpoints) can be effectively 1D
(no-stress on sides, bedrock only varies along-flow)

• Steady grounding line and divide thickness predicted by the
quasi-analytic solution of Schoof (2006) shown (squares)
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What do we get from mesh adaption?

Figure: xg versus t

• With 400 Gridpoints, a non-adaptive mesh compares poorly with an
a Moving Mesh

• However, a Moving Mesh does much better with only 100 gridpoints
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What about Adaptive Refinement in 1D?

Figure: xg versus t

• grounding line movement from first step from MISMIP experiment

• Adaptive Refinement model seems to get “stuck” even though it
should advance
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2D Domain

Figure: Relief and Top-Down View

2D model domain: no-slip margins and an Ice Divide at the left.
The entire domain is ice-covered and the calving front is fixed.
Accumulation is constant and uniform (and positive).
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2D Experiments

• With no analytic solutions for 2D, we need to convince
ourselves that the model is solving the equations satisfactorily

• Key results of Validation/“Sanity Check”:
• With a moving mesh, results are convergent w.r.t. mesh size,

and low-buttressing limit is consistent with 1D solution
• Neither a fixed mesh nor an Adaptively-Refined mesh exhibit

such behaviour at comparable cost

(for more details, come to the thursday talk...)
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Buttressing/Stability Experiment

• But we seek to say something more concrete about buttressing

• It is known that, without buttressing, a foredeepened bed is
unstable

• A small retreat of the G.L. results in higher G.L. flux, which
leads to thinning at the G.L. and more retreat (W eertman,
1973)..

Figure: Van der Veen, Fundamental of Glacier Dynamics
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Buttressing/Stability Experiment

• On the other hand, rigid
sidewalls lead to the
presence of horizontal shear

• We expect that the narrower
the channel, the more the
walls are “felt”, and maybe
instability can be reversed
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Buttressing/Stability Experiment

• In this experiment, simulations were done on a foredeepened
bed with rigid sidewalls

• Constant Parameters:
L (length): 1,500 km
a (accumulation): 0.3 m/a (no melting)
A (Glen’s Law constant): equivalent to −20◦ C
Depth at shelf front: 600 m

• Varied Parameters:
α (bedrock slope): between .001 and .00025
W (channel width): 150-1000 km

C (friction coefficient): 5-15 MPa(s/m)
1
3
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Buttressing Experiment

• The goal: for each (W ,α) pair, how long (if ever) until VAF
(volume above flotation)→ 0? e.g :

Figure: VAF vs time, α = 5× 10−4

• Our criteria for collapse is VAF = 0.1× VAF0



Outline Model Numerics 1D Results 2D Simulations Conclusions

Buttressing Experiment Results - Base Case

Color = years to collapse (i.e. when VAF = 0.1× VAF0)
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Buttressing Experiment Results - Low C

We see that decreasing basal strength can quicken collapse by
several millenia..
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Buttressing Experiment Results - High C

And we see that increasing basal strength can slow collapse by a
comparable amount.
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Is Adaptive Refinement ever good?

• For a narrow channel (W /L = 0.1) we look at along-flow
longitudinal stress (σxx). Without high tensile stress at the
grounding line (red line), there is no need for ultra-fine
resolution there.

• A highly-refined uniform mesh (top) agrees well with an
Adaptively Refined mesh (bottom).
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Is Adaptive Refinement ever good?

• However, we see that a Moving Mesh does a pretty bad job of
representing σxx .

• This may be because of distortion of the Moving Mesh where
the grounding line intersects the side boundaries. If this is the
case, then a moving mesh may not only be unnecessary with
strong buttressing but counterproductive.
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Application: Ice Rises (& movies)

• One way to view an ice rise is that it effectively reduces the
width of an ice shelf

• Does it change stability? Does it agree with the previous
experiment?

• Experiment: Channel 550 km wide, bed as before but with
rise ∼ 200m below S.L. - does it prevent collapse?
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Conclusions

• The ability to successfully simulate grounding line migration in
a 2D context will be valuable to more realistic (less idealized)
models of marine ice sheets

• Buttressing by sidewalls (and even more so by ice rises) is
shown to be sufficient to reverse or dampen marine ice sheet
instability at realistic scales; the effect is also sensitive to
basal strength

• In many of the cases we examined, Moving Mesh seems to be
stronger than Adaptive Refinement. However, we have seen it
fall down..
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Further Work

• Inclusion of effects which can be expected to systematically
affect results (calving of long ice shelves, weakening of ice in
shear margins, bedrock adjustment)

• Mass balance was uniform - how would a realistic ocean
change the melt pattern in response to ice shelf/grounding
line evolution?

• Despite its weaknesses, Adaptive Refinement has the promise
to be more versatile, and more amenable to coupling with
ocean or realistic bedrock
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